Circumscribing Constant-Width Bodies with Polytopes
نویسنده
چکیده
Makeev conjectured that every constant-width body is inscribed in the dual difference body of a regular simplex. We prove that homologically, there are an odd number of such circumscribing bodies in dimension 3, and therefore geometrically there is at least one. We show that the homological answer is zero in higher dimensions, a result which is inconclusive for the geometric question. We also give a partial generalization involving affine circumscription of strictly convex bodies.
منابع مشابه
Perfect Delaunay Polytopes and Perfect Inhomogeneous Forms
A lattice Delaunay polytope D is called perfect if it has the property that there is a unique circumscribing ellipsoid with interior free of lattice points, and with the surface containing only those lattice points that are the vertices of D. An inhomogeneous quadratic form is called perfect if it is determined by such a circumscribing ”empty ellipsoid” uniquely up to a scale factorComplete pro...
متن کاملAnalytic parametrization and volume minimization of three dimensional bodies of constant width
We present a complete analytic parametrization of constant width bodies in dimension 3 based on the median surface: more precisely, we define a bijection between some space of functions and constant width bodies. We compute simple geometrical quantities like the volume and the surface area in terms of those functions. As a corollary we give a new algebraic proof of Blaschke’s formula. Finally, ...
متن کاملApproximation of Smooth Convex Bodies by Random Circumscribed Polytopes
Choose n independent random points on the boundary of a convex body K ⊂Rd . The intersection of the supporting halfspaces at these random points is a random convex polyhedron. The expectations of its volume, its surface area and its mean width are investigated. In the case that the boundary of K is sufficiently smooth, asymptotic expansions as n→∞ are derived even in the case when the curvature...
متن کاملOn Boundary Arcs Joining Antipodal Points of a Planar Convex Body
Using notions of Minkowski geometry (i.e., of the geometry of finite dimensional Banach spaces) we find new characterizations of centrally symmetric convex bodies, equiframed curves, bodies of constant width and certain convex bodies with modified constant width property. In particular, we show that straightforward extensions of some properties of bodies of constant Euclidean width are also val...
متن کاملLattice 3-Polytopes with Few Lattice Points
This paper is intended as a first step in a program for a full algorithmic enumeration of lattice 3-polytopes. The program is based in the following two facts, that we prove: • For each n there is only a finite number of (equivalence classes of) 3polytopes of lattice width larger than one, where n is the number of lattice points. Polytopes of width one are infinitely many, but easy to classify....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999